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Abstract. Suppose a sequential sample is taken from an unknown discrete probability distribution on 
an unknown range of integers, in an effort to sample its maximum. A crucial issue is an appropriate 
stopping rule determining when to terminate the sampling process. We approach this problem from a 
Bayesian perspective, and derive stopping rules that minimize loss functions which assign a loss to the 
sample size and to the deviation between the maximum in the sample and the true (unknown) 
maximum. We will show that our rules offer an extremely simple approximate solution to the 
well-known problem to terminate the Multistart method for continuous global optimization. 
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1. Introduction 

In this paper we describe a Bayesian estimation procedure for an arbitrary discrete 
probability distribution on [y-, y’] fl N for which the probabilities a,-, . . . , O,+ 
and the minimum value y- and the maximum value y+ are all unknown. In the 
Bayesian approach the user is asked to express his beliefs about the unknowns in 
the form of a prior probability distribution. The sampling information is then used 
to convert these initial beliefs into the posterior distribution of the unknowns 
through Bayes’s Theorem. 

A relevant extension of the above statistical framework is the development of 
stopping rules for sampling procedures which aim to detect the minimum value or 
maximum value at reasonable cost: Given the posterior distribution of the 
unknowns, a decision whether or not to stop sampling has to be taken which 
weighs the cost of further sampling against the posterior expected revenues. 

In this paper we consider two loss functions, i.e., cE.n + c’.[y’ -y+(n)] and 
c4n + c’.[y+ - Y+(n)llb+ -Y-I, h w ere n denotes the sample size, y+(n) is the 
maximum in the sample, and cE and C* are constants to be chosen by the user. 
Thus, the loss is determined by the sample size and by the deviation between the 
maximum in the sample and the true maximum. We show that, given uniform 
prior distributions for the unknowns, the Bayesian one-step look ahead stopping 
rule for the first loss function is to stop the sampling process when [c”/ 
c’].n.[n - 313 [y+(n) -y-(n) + 11, where y-(n) denotes the minimum in the 
sample. Under the same assumptions the optimal rule for the second loss function 
is to terminate sampling when [c”/c’].n.[n + l] b 1. Thus, for the second loss 
function the optimal sample size can be determined prior to the sampling 
procedure. 
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Such stopping rules apply, for example, to successful optimization methods for 
globaL and combinatorial optimization problems, where a local search procedure is 
started from a set of randomly sampled starting points. In the Multistart methods 
for global optimization, a local search procedure is started from every point in the 
sample or from an appropriate subset of the sample (Rinnooy Kan and Timmer 
1987). Sampling in combination with local search techniques are also successfully 
applied to combinatorial problems (Lin 1965). In a proper implementation of 
these methods, the best observed value converges to the true optimum value with 
probability 1 when the sample size grows to infinity. However, since one is unable 
to continue the search forever, there is a need for stopping rules to determine the 
sample size which yields the optimal trade-off between reliability and computa- 
tional effort. Since at each trial each local optimum has a fixed (unknown) 
probability of being sampled and since the true optimum value is unknown, our 
rules can be applied to these algorithms. 

With respect to the application of Bayesian stopping rules to (stochastic) global 
optimization methods, we refer to Zielinski (1981), who originated the research 
in this field. However, the stopping rules in this reference are only based on the 
frequencies of occurrence of the sampled local optima: the rules prescribe to 
terminate a sequence of local searches on the basis of the posterior distribution of 
the number of unobserved local optima, independently of the function values of 
these optima, which may of course be worse than the ones which have already 
been observed (see also Boender and Rinnooy Kan 1987). To cope with this 
problem, Betro and Schoen (1987) introduced an alternative Bayesian frame- 
work, which processes the observed function values. Finally, in Piccioni and 
Ramponi (1991) a class of Bayesian stopping rules is described which involves 
both the frequencies of occurrence of the local optima, and their function values. 

The rules in this paper are also based on the frequencies of occurrence of the 
local optima and their function values. However, we realize that, due to the 
integrality assumption, our rules only provide an approximation for terminating 
random sampling methods for continuous global optimization. However, opposite 
to the rules in Piccioni and Ramponi (1991), our rules are given by extremely 
simple cZosed form formulae, and from the numerical Section 5 it will appear that 
they work well, so that (in the opinion of the authors) they offer an appealing 
simple approximating alternative for the existing exact rules. 

In Section 2 we describe the statistical model which is studied in this paper. 
Section 3 contains the prior and posterior distribution of the unknowns. This 
information is used in Section 4 to develop stopping rules for a sequential sample. 
Section 5 contains numerical experiments about the application of the rule to 
terminate the Multistart procedure on standard test problems for global optimi- 
zation. 

2. The Statistical Model 

Our statistical model is an arbitrary discrete probability distribution 



WHEN TO STOP SAMPLING FOR THE MAXIMUM 333 

Pr{i} = Oi i E [Y-, ~‘1 II N, (1) 

where Oi is the probability of sampling the value i, and y and y+ are the 
minimum and maximum possible value respectively. Prior to the sampling process 
the parameters Oj, y- and y+ are all unknown. 

For a sample of y1 independent observations, define the random variables 

W = Number of times that the value i occurs (C N, = n) 
Y-(n) = Minimum value in the sample 
Y’(n) = Maximum value in the sample. 

Then it is well known that the sampling distribution of the frequencies of 
occurrence Ni is multinomial, i.e., 

Y+(n) 

Pr{(N,-(,,, . . . , Ny+(n)) = (n,-(,), . . . , n,+(,,)} = n! . n Orilni! . (2) 
i=y-(n) 

We note that the distribution (2) is actually conditional on the minimum value y -, 
the maximum value y+ and the probabilities O,-, . . . , O,+ , but in our notation 
these dependencies will henceforth be omitted. 

3. The Prior and Posterior Distribution 

In the Bayesian approach the unknowns y , yf, @I,-, , . . , O,+ are themselves 
assumed to be random variables Y , Yf, O,-, . . , O,+ for which a prior 
distribution is provided by the user. For a given and known minimum and 
maximum value, the standard Bayesian approach is to assume a natural conjugate 
Dirichiet prior distribution for the unknown probabilities. In our extension, the 
minimum and maximum value are also unknown parameters for which we assume 
a priori that the probabilities that Y- = ml and Y+ = m2 (ml d m2) are equal to 
arbitrary constants rml and r,,,*. Conditionally on Y- = ml and Y+ = m2, the 
probabilities Oml, . . . , O,, are assumed to follow a Dirichlet distribution with 
parameters am,, . . . , (Y,~ (Ccyi = cz). Note that this assumption implies that the 
prior expected value and variance of the unknown probabilities Oi are equal to 
LY~/LY and (cx~/~).[(cz, + l)/((~ + 1) - aila] respectively (see, e.g., Wilks 1962). 
Thus, the prior expected value of Oi is proportional to (Y~, and the corresponding 
prior variance decreases inversely with the total value of the ai’s. 

Given the above sampling distribution, and the prior distributions for the 
unknown minimum and maximum and probabilities, it follows easily from Bayes 
Theorem that the posterior distribution of the unknowns is equal to: 

Pr{ Y- = ml, Yf = m2, Olnl E d$,l, . . , O,, E d$*?l 

W,-,,,, . . . 9 Ny+(,)) = (ny-(+ . . . > ny+cn,>> = 

= Pr{Wy-(,) I . , NY+,,,) = (ny-(n)l . 1 n,+,,,>) . 

. Pr{Y- = ml}.Pr{Y+ = m2). 
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Pr{@,, E &,, , . . . ) o,, E &bm21 Y- = ml, Y+ = m2) 

r’(n) 

Oc 7?n1~7l?2~ (a! - l)!. n C$;i. E C#J4-‘/(CIj - l)! ) (3) 
i=y-(n) j=ml 

where CC denotes proportionality. Note that the probability mass of the dis- 
tribution 3 is concentrated on the domain {---co < ml s m2 < co}. Secondly, given 
each pair (ml, m2) with ml < =m2, the probability distribution of the prob- 
abilities is a degenerate Dirichlet distribution on the unit simplex {Oi > =0, 
i=ml,...,m2;0,,+...+0,, = l}. Note that in the right hand sides of (3), 
as well as henceforth, for reasons of abbreviation we omitted the terms d&. 

As a special case we can choose the prior to be non-informative, i.e., for the 
minimum and maximum value each non-negative integer is regarded eguiprobabte 

(rm1 = 7m2 = 1 for all ml < =m2), and given Y- = ml and Y+ = m2 the prob- 
abilities O,, , . . . . , Om2 are uniformly distributed on the unit simplex in Rm’-ml+’ 
(CY~ = 1 for all i). Then, applying the equality, 

-g l-1 - 

i-=x (n + r)! @-l).(;!+X-l)! ’ (4) 

the following posterior results can be proved: 

Pr{ Y- = ml, Y + = m2, O,, E d~$,~, . . . , Om2 E cQrn21 

(4-(n)> . . . 2 NY+@)) = (n,-(n), . I . ) ny+(q)l = 

= [(n - l).(FZ - 2).(n + y+(n) -y-(n) - 2)!.(m2 - ml)!] ‘+(‘) 

[y’(n) -Y-(n)]! 
.&W~! 

(5) 

The marginal posterior distribution of the maximum and minimum value: 

WY’ = m2/(Ny-(n), . . . , NY+(,)) = (n,-(,), . . . , ny-c,,)> = 

[n - 2].[n + y+(n) -y-(n) - 2]!.[m2 - y-(n)]! 

[y’(n) - Y-(n)l!.[ n+m2-y-(n)-l]! ’ (6) 

Prt Y- = mlI(N,-(,,, . . . , NYfcn)) = (n,-(,), . . , nyfcnJ) = 

[n - 2].[n + y+(n) - y-(n) - 2]!.[y+(n) - ml]! 
[y+(n) - y-(n)]!.[n + y+(n) - ml - l]! . (7) 

The posterior expectation of the maximum and minimum value: 

~{y+IwY-,n,7~ . . 7 N,-(n)) = (Q,,), 3 +(,,)I 

= G.[y’(n) -y-(n) + l] + y-(n) - 1 ) (81 

w-lwY-,n)~ . . . a NY+(J = (ny-(n)> . . . 1 n!.+,,,>> 

n-2 
= n-3 .[y-(n) - y’(n) - l] + y+(n) + 1 . (9) 
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The posterior expectations of the probabilities of occurrence: 

w,lw,-,,,~ . . 7 %+@)I = (n,-(n), . . . 3 ff,+,n,>> 

n-2 ni + 1 
n ‘~+y+(n)-yP(n)-l 

for y (n)Siiy+(n) 

n-2 [by-(n)]!.[n+y+(n)-y-(n)-2]! 
= -ii--’ [y’(n) - y-(n)]!.[n + i - y-(n) - l]! for i>y+(n) (10) 

12 - 2 [y’(n) - i]!.[n + y+(n) - y-(n) - 2]! 
= Y’[y+.(n)-y-(n)]!.[n+y+(n)-i-l]! for lCy-@) 

Given a quadratic loss function, the above expected values are optimal Bayesian 
estimates for the unknown minimum and maximum values y- and y+ and for the 
probabilities @I,-, . . , O,+ (Lindley 1978). (We observe from (10) that the sum 
of the posterior expected probabilities is precisely equal to 1). These Bayesian 
estimators can be applied, for example, to the computation of an optimal (s, Q) 
inventory policy in the case that not only the probability distribution of lead time 
demand, but also the maximum lead time demand is unknown (Boender and 
Rinnooy Kan 1990). 

4. Stopping Rules 

In this section we use the posterior information to construct stopping rules for the 
search of the maximum value y+. In non-sequential or zero step look ahead 
stopping rules the posterior information is used only to determine if the current 
best value y+(n) is satisfactory. For example, one may stop the sampling proce- 
dure when the posterior probability [y’(n) - y-(n) + 11 /[n + y’(n) - y-(n) - 11, 
computed through (6), that there exists a better value than y’(n), is less than a 
prescribed value, or one may stop sampling when the round-off of the posterior 
expected optimum, given by (8), is equal to the sampled maximum. 

Sequential stopping rules take into account the posterior expected revenue as 
well as the cost of further sampling. We assume that the sampling cost is equal to 
a fixed quantity cE for each sample point. The revenue will first be assumed to be 
equal to a fixed quantity cT per unit improvement of the deviation between the 
sampled maximum y’(n) and the true maximum y+. Hence, the so-called loss 
function is equal to 

L, = c’.[y’ -y+(n)] + cE.n . (11) 

In the Bayesian approach the unknown quantity of interest y’ of (11) follows a 
posterior distribution, so that L, is also a random variable, whose so-called 
posterior loss is equal to: 

E{L,,I(N,-c,,, . . . , NvfcnJ = (ycn13 . I ny+(,,))} 
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= cT.[E{ Y+ I(&-OQ, . . . , NY+(,)) = (n,-(,), . . . , ny+(n))} - y’(n)] + 2.n 

= c’.[y’(n) -y-(n) + l]l[n - 3]+ cE.n . (12) 
The sequential Bayesian analysis is based on the following observation. Given a 
sample of size n, the posterior loss of a sample of size n + 1 is a random variable 
depending on the outcome of the additional sample point. The posterior prob- 
abilities of these outcomes are given by formula (10). Thus, the stochastic 
sequence of posterior losses satisfies the recurrence relation: 

Y+(n) 

+ C E{@il(Ny-tn), . . . , NY+(,)) = (By-(,), . . , ny+(,,)> 
i=y-(n) 

. E{L+ll(Ny-(,+l)~. . . 7 NY+(n+l)) = (ny-(n), , 3 ny+&l 

y-(n)-1 

+ c E{@il(Ny-,,z,, . . . 3 Nr+(nJ = (ny-(n)2 . . , ny+cn))) 
iz-m 

Substitution of (10) and (12) in (13) yields: 

w~~,+lIw,-(n+*,~~ . . I %+(n+l))NK-(,+~ . . , NY+(,)) 

= (n,-,,), . . . , ny+c,,)} = c”.(n + 1) 

+ ’ 
n - 2 [n + y+(n) - y-(n) - l]! 

i=y+(n)+l “.T’ [y'(n) - y-(n)]! 

[i - y-(n)]! i-y-(n)+1 
’ [n -t i - y-(n) - l]! ’ n-2 

+ ,g) 
i=y-(n) 

cT.+2~n+y+(;i;;p( )~l~Y+w;~~n)+l 
n 

+ y-Z-m1 CT n - 2 [n + y+(n) - y-(n) - l]! 
;=-CC n ’ b+(n) -r-(n)]! 

[y’(n) - i]! y+(n) - i + 1 
f [n + y+(n) - i - I]! ’ n-2 

= c”.(n + 1) + c’.[n - l].[y+(n) -y-(n) + l]l{n.[n - 31) . (14) 
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The Bayesian one step look ahead stopping rule now prescribes to stop sampling 
when the expected posterior loss (14) is greater than the current posterior loss 
(12) (see, e.g., De Groot 1978), because in that case the posterior expected 
revenue of an additional sample point is clearly insufficient to compensate for the 
corresponding sampling cost c e. In our model this turns out to be the case when 

[ce/crJ.n.[n - 31 i> [y+(n) - y - (n )  + 11. (15) 

Next we consider the loss function, initiated by a remark of prof. T6rn at the 
IIASA conference on Global Optimization in Sopron, Hungary, 1990, 

L n = cr.[y + - y+(n)]/[y+ - y-]  + ce .n ,  (16) 

i.e., the user assigns a termination loss to the deviation between the sampled 
maximum y+(n) and the true maximum y+, as a fraction of the range [y+ - y ]. 
Then the posterior loss can be shown to be equal to 

E{L,,I(Nv-(n),..., Ny+(n)) = (ny-(n), . . . , ny+(~))} = cr/n + cE.n. (17) 

Thus, for this choice of the loss function the optimal stopping rule is to terminate 
when the sample size n satisfies 

[ce/crl.n.[n + 1] t> 1. (18) 

Hence, for the loss function (16) the optimal sample size can be determined prior 
to the sampling procedure! 

5. Numerical Results 

In this section the rules (15) and (18) are applied to the Multi-start algorithm for 
global optimization of continuous multi-modal objective functions. Pure Multi- 
start proceeds by randomly sampling feasible points, usually according to the 
uniform distribution over the feasible region, and starting a local search proce- 
dure from each of the sampled points. Clearly, there is a need for a stopping rule 
which optimally weighs the potential revenues of further sampling of optima 
against the required additional computational effort. 

We applied the stoping rules to a number of test functions for global optimiza- 
tion (Dixon and Szeg6 1975). In Table I we show the values of the global maxima 
y+, and the values of the lowest local maximum y-, as well as the probabilities 

Table  I. Characterist ics of  the  test funct ions for global optimization 

Global m a x i m u m  Lowest  local max imum 
& sampling probability & sampling probability 

Goldste in  & Price y+ = - 3 . 0 0  57.1% y -  = -840 .00  6.0% 
Sheke l5  y + = + 1 0 . 1 5  32.0% y = +2.63 17.9% 
Shekel  7 y÷ = +10.40 30.1% y -  = +1.83 2.5% 
Shekel  10 y+ = +10.53 22.7% y = +1.67 2.6% 
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Table II. Average number of local searches and the probability that the global maximum is 
sampled in 25 experiments for three specifications of the loss function L, = c’.[y’ - 
y’(n)] + 2.n (11) 

Rule (1.5): [c”/c’].n.[n - 312 [y’(n) -y-(n) + l] 

c”lc’ = 0.1 c”lc’= 0.5 c”lc’ = 1.0 

Goldstein & Price 80.36 100% 27.00 100% 11.76 100% 
Shekel 5 10.88 96% 5.88 88% 4.88 88% 
Shekel 7 11.16 92% 5.84 76% 4.76 72% 
Shekel 10 11.88 96% 6.36 76% 4.92 76% 

that these local maxima are sampled. As local optimization procedure we used the 
simplex method of Nelder and Mead as programmed in Numerical Recipes (Press 
et al. 1986). 

In Table II we show the results which are obtained by the one step look ahead 
rule (15) which is based on the loss function (11). For 25 sequencies of local 
searches and three different versions of (11) we show the average number of local 
searches and the percentage of times that the global maximum y+ is sampled at 
the moment that (15) prescribes to stop. In Table III we show the results which 
are obtained by the optimal rule (18), based on four specifications of the loss 
function (16). Clearly for this rule the required number of local searches can be 
determined in advance, given that the loss function (16) is completely specified. 

Note that for the loss function (11) c”/c’ may be interpreted as the number of 
local searches that one is willing to do to improve the sample maximum y’(n) by 
one unit. For the loss function (16) 100 * cE/cr may be interpreted as the number 
of local searches that one is willing to do to improve the deviation of the sample 
maximum y’(n) from the true maximum y+ by 1 percent of the range [ yf - y-1. 

We observe from Table II that the number of local searches that is required for 
the Goldstein & Price test function is much larger than for the Shekel family, 
although the probability to sample the global maximum of the Goldstein & Price 
test function is larger than for the Shekel family. This phenomenon is evidently 
due to the fact that the Goldstein & Price test function has a much larger domain 
[y-, y’] than the Sh e e k 1 f amily. For this test function the worst local maximum, 
and the worst but one are respectively equal to -840.00 (6% of occurrence) and 

Table III. Optimal number of local searches and the corresponding probability that the 
global maximum is sampled for four specifications of the loss function L, = c’.[ y+ - y’(n)] / 
[y’ -y-l + cE.n (16) 

Rule (18): [cEic’].n.[n + l] 2 1 

c”/c’ = 0.001 c”ic’ = 0.01 c”i2 = 0.1 c”lc’= 0.5 

Goldstein & Price 32.0 100% 10.0 100% 3.0 92% 1.0 51% 
Shekel 5 32.0 100% 10.0 98% 3.0 69% 1.0 32% 
Shekel 7 32.0 100% 10.0 97% 3.0 66% 1.0 30% 
Shekel 10 32.0 100% 10.0 92% 3.0 54% 1.0 23% 
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Table IV. Required sample size n* to detect the global 
maximum y + with probability 95% 

n* 

Goldstein & Price 3.5 
Shekel 5 1.8 
Shekel 7 8.4 
Shekel 10 11.7 

-84.00 (13% of occurrence). Thus, if one is sampling for the global maximum 
value -3.00 of the Goldstein & Price test function, and one is “unlucky” enough 
to decrease the sample minimum y-(n) from -84.00 to -840.00, then the 
stopping rule [c”/c’].n.[n - 313 [y’(n) - y-(n) + l] will obviously prescribe to 
continue sampling much longer. 

We will not attempt to use the above numerical results to compare the quality 
of the rules (15) and (18) with the quality of other rules. First of all, such a 
comparison is clearly a three-criteria-decision-problem, since one is interested in 
minimizing the required number of local searches, in maximizing the probability 
that the global maximum is sampled, and in minimizing the computational effort 
to compute the decision whether to continue or stop. Furthermore, such a 
comparison is hampered by the fact that the different rules require ‘different 
parameters to be set, like in our case the number of local searches that one is 
willing to do to gain improvement of the sample maximum. 

Instead, we computed the number of local searches to obtain the global 
maximum with 95%, if the probability of sampling the global maximum y+ (cf. 
Table I) would be known. Denote the probability of occurrence of the global 
maximum y + as p. Then it is easy to show that the required number of local 
searches is equal to ln( 1.0 - 0.95)/ln(l.O - p). We depicted these values for the 
different test functions in Table IV, and we let the readers conclude for them- 
selves. 
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